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Estimating IFRA and NBU Survival Curves

Based on Censored Data

Running Title: Estimating IFRA and NBU Survival Curves

Jane-Ling Wang*
Division of Statistics
University of California, Davis

’ ABSTRACT.

2 // b
/ P ~ )
; “~—3In- this paper, yé considerﬁyhe problem of estimating a survival curve
N T
from randomly right censored data when it is known to havey{e) Increasing
Yy '
Failure Rate Average (IFRA), or to be %b) New Better than Used (NBU). Let

Fa(t) be the product-1limit estimator (PL-estimator) of Kaplan and Meier for

-
T

the 1ife distribution. Since Fj(t) never has the IFRA property and may not be

-

NBU, we modify FL(t) to have the desired IFRA (NBU) properties,

o W Wr

The modified estimators are ea?y to compute and ,under mild conditioms,
*q_ :'PL o the VG f,a‘- e ",,b A

are shown to be asymptotically n*fz-equivalent to P*(t) on compact intervals.

PP s s

\ Thus the modified estimators share the asymptotic properties of the

PL-estimator Fy(t). (T

; AMS 1980 Subject Classifications: Primary 62G05, 62E20, Secondary 62N0O5

Key words and phrases: Star-shaped function, superadditive function
product-limit estimator, hazard function. -
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1. INTRODUCTION AND SUMMARY

In reliability theory and survival analysis, it is often desirable to
estimate survival curves or equivalently, life distributions. In some
circumstances the lifetime X; of the tth jtem 18 not observed, rather we only
know that it exceeded a time Yy, For example, in clinical trials patients may
move away or die of some other causes and therefore are lost to the study.
Let (X3, Y3), i=1, ..., n be i.i.d. random variables with X; and Y4
independent for each i. Let F(t) = P(X) < t) and G(t) = P(Y] < t) denote the

distribution function of X; and Y| respectively. F(t) is referred to as the

1life distribution and G, the censoring distribution. In random censorship
model one observes (23, 64), i=1, «.., n, where Zy = Min (X;, Yy),

64 = I(Xy < Y4) and, I(A) 1s the indicator function of a set A. Techniques
for estimating F(t) using (Zj, 64), 1=1, ..., n, have been known for a long
time only recently has there been much concern with estimating F(t) when it 1is

known to belong to a certain nonparametric class of distributionms.

Lo 4

A variety of such classes which arise naturally in practice are given in
Barlow and Proschan (1981). 1lo and Phadia (1984) treat the classes of convex

distributions and increasing faflure rate distributions. We shall consider

Y 3 e

two nonparametric classes in this paper: (1) the class of distributions with
increasing fallure rate average (IFRA) and (2) the class of distributions with
the "New Better than Used (NBU)" property.

For a life distribution F(t), let F(t) = 1-F(t) and H(t) = -log F(t)

denote 1its survival and hazard function respectively, A distribution function =

L]

F(t) with F(0) = O is said to be IFRA if H(t) is starshaped, that 1s; H(t)/t

is a nondecreasing function of t. A distribution function P(t) is said to be

L | ey g ]

NBU 1f F(x+y) < F(x) F(y), or equivalently H(x+Y) » H(x) + H(Y); that is,

H(t) 1is superadditive. Note that an IFRA distribution is also NBU,

.
-
»
Y
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~
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The class of IFRA distributions arises naturally in shock models (Esary,
Marshall and Proschan (1973)) and is the smallest class containing the
exponential distributions, closed under the formation of coherent structure
and taking limits in distributfons (Birbaum, Esary and Marshall (1966)). The
NBU concepts means that the residual lifetime of a used item tends to be
shorter than the lifetime of a new item.

The product-limit estimator (PL-estimator) F,(t) due to Raplan and Meier
(1958), the most commonly used nonparametric estimator of F, will now be
defined. Let Z(j) be the 1th order statistics from the sample {Z4,1=1,...,n}
and 8(4) be the corresponding indicator function associated with Z(4)s The

PL-estimator is:defined by

-1 S)
(1.1) 1 - Py(t) = n GEOD  » 1f €< 2y
Z(q)<t
0 , otherwise,

Large sample properties of the PL-estimator have been studied extensively
by Breslow and Crowley (1974), Csorgo and Horwath (1983), G111 (1983) and Lo
and Singh (1984) among others. Moreover, Wellner (1982) showed that the
PL-estimator posseses desirable asymptotic optimality properties, e.g.
minimax., 1In this paper we modify the PL-estimator (1.1) so that is has the
known property (IFRA or NBU) of F(t) and remains close to the original
PL-estimator.

We shall restrict the estimation problem only on compact intervals {0,T],
where T is any point with F(T) < 1 and G(T) < 1. Llet Hy(t) = =log (1-F,(t))
be the hazard function of F,(t). 1In Section 2, we construct estimators C,(D,)

of the hazard function H(t) under the assumption that F is IFRA (NBU) by

modifying H,(t). The modified estimator of F(t) is the distribution function

— e
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whose hazard function is Cn(t) (Dn(t)) respectively. The modified estimators
Ch and D, can be expressed in close form (cf. (2.1) and (2.3)) and are easy to

compute, Moreover,

Sup | Cp(t) — H(t) | ¢ Sup | Hp(t) - H(t) |.
0<t<T 0<t<T

Hence Ch(t) is closer to H(t) than Hh(t) in the sense of Kolmogorov distance.
The main results of the paper are Theorems 4.1 and 4.2 where we show that

under mild conditions,

sup nl/2 | cy(t) = Hy(t) | and Sup nl/2 | py(t) - H(t) | tend to zero in
0<t<T O<t<T

probability, Thié implies then the asymptotic behavior of our modified
estimators are the same as that of the PL-estimator.
The proofs of Theorems 4.1 and 4.2 utilize an 1.i.d. representation of

Ha(t) by Lo and Singh (1984). Relevant results are summarized in Section 3.
2., DESCRIPTION OF THE ESTIMATORS

In this section we shall modify the PL-estimator (defined in (1.1)) so it
has the desired IFRA or NBU property. We shall construct the estimators on
the interval [0,T].

First consider the case when F 18 known to be IFRA,

Let C,(t) = Sup {h(t) : h(t) < Hy(t) for 0 < t < T, where h(t) is
starshaped on [0,T)}, 1.e. Cn(t) is the greatest starshaped minorant (GSM) of

Hp(t) on [0,T]. It 1s easy to check that Ch(t) is starshaped. A closed form

of C, can be obtained as follows:

n

let m = T 1(61 =1, Z, < T) be the number of uncensored observations in the
{=1

i
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interval [0,T} and {Z?, zg, sy Z:} be the uncensored observations from

{Z], «e¢s, Z,)} which correspond to actual lifetimes, and are in the interval
[0,T]. The PL-estimator assigns positive mass on the interval [0,T] only to

those points {Zg, i=1, ..., m}. Let ay be the smallest slope of all the lines

connecting the origin and the point (Z:, nn(zz-)). for k=i, j+1, ..., ml,
where,

z 0

0 0
e+l T, H, is taken to be right continuous and hence Hn(zk-) = nn(zk_l).

0 \,.0
= wmin {H,(Z2.-)/2,} .
I jckcortl Pt

That 1s, a
Using the results of Wang (1984a) in the 1.i.d. case, it is easy to check that
the modified estimator C,, which is the GSM of H, is a piecewise linear

function of the form:

, 0 0 -
(2.1) Ca(t) = ot , for 43_1 <t zj s I=1, <o, ml.

Thus C,(t) has a close form expression and is easy to compute. The follow-
ing lemmas asserts that C, is closer to any starshaped functifon on [0,T] than

Hp, and hence is closer to the true hazard function H(t) than H,.

Le 2,1. For any starshaped function ¢(t) on [O,T],

Sup - | Cu(t) = #(t) | < Sup | Ho(e) - o(t) | .
0<t<T 0<t<T

PROOF: Let Sup | Ha(t) = ¢(t) | = A,
0<t<T
If A = », there is nothing to be proved. If A < =, 6(t) -A is starshaped on

[0,T] and Hy(t) > ¢(t) =A. From the definition of C, we have Ch(t) > o(t)=A.

Ppeptas e, m  a_ . DR LR P S Lt et e L el WA A L T e T e e A o Ve
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Since C, is a minorant of H,, we have C,(t) < Hy(t) < ¢(t) + A, so the lemma

holds. .

Since H is starshaped we have

Corollary 2.1 Sup | Cplt) = H(t) | < Sup | Hy(t) - H(t) |.
o<t<T 0<Kt<T

Thus C, is a better estimator of H than the hazard function, H,, of the
PL-estimator. A modified estimator of F(t) is then taken to be the
distribution §n(t) = 1 - exp {=Ch(t)}. Note that ;n is not necessarily a
better estimate of F(t) than F, although its hazard function is a better
estimate of H(t) than H,. Theorem 4.1 however guarantees its equivalence to
the PL-estimator,.

Next, we shall consider the case when F(t) is assumed to be NBU, Since
an NBU distribution has superadditive hazard function. It is therefore
natural to consider

(2.2) Dh(t) = Inf {H,(s+t) - H,(s)}
0<t<T

as our estimator of the hazard function H(t). The estimator D, is analogous
to the estimator in Boyles and Samaniego (1984) developed for the uncensoring
case. Their results show that D,(t) 1is superadditive. Since R, is a step

function with jumps at {Z?, Zg, esey Zg), to compute D, one only needs to

take the infinum in (2.2) over these points, i.e.,

(2.3) Da(t) = Inf (H(z) + t) = By(2))}, where 2) = 0,
0<i<m

and D, is a step function with jumps at points of the form zg - Zg for some

r and s. Note that D,(t) < R,(t) for all t, and if H, is superadditive,

Dnp(t) = Hy(t) for all t. To estimate F(t), we again use the distribution




% *
Fn(t) whose hazard function is D,, 1i.e., Fn(t) =1 - exp {-Dy(t)}.

Unlike the IFRA case we cannot show that D, is a better estimator of H

than H,. However we have

Lemma 2.2. For any superadditive function 4(t) on [O,T],
Sup | Du(t) = () | < 2 Sup | Ha(t) = o(t) |.
0<t<T 0<t<T

PROOF: Let Sup | Hu(t) ~ ¢(t) | = A,
0<t<T

It then follows that Dy(t) = Inf {H,(s+t) - H,(s)}
0<s<T

. > Inf {¢(s+t) - ¢(8) - 2A}
0<s<T

= ¢(t) - 2A ’

where the last step follows from the superadditivity of ¢(t). The lemma now
follows from the fact that

Da(t) < Hu(t) < ¢(t) + A, s
Lemma 2.2 implies that D, is a strongly uniformly consistent estimator of H(t)
on [0,T] with at least the same rate of convergence as Hn(t). Theorems 4, 5

and 6 of Boyles and Samaniego (1984) are immediate consequence of Lemma 2.2,
3. PRELIMINARIES

As mentioned in Section 1, the techniques of our main results (Theorems
4,1 and 4.2) are based on the 1.i.d. representations of the PL~process derived
by Lo and Singh (1984). In this section, we shall give the results that are

later needed in Section 4 to establish the main theorems.

. . s e e » N M P BT a8 e " a"R"* o . ay TNy St Nt et e, « ST S ST P T SR
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Lemma 3.1. (Lo and Singh (1984)) Let nj}, ++., Ny be 1.i.d. random variables
with mean zero, variance 02 and |ng| < C for some constant C for all 1<i<n,

For any positive d and z satisfying Cz < d and nzo2 < d2 one has

n
POJE n |<3d)c2e”

1'1 i
PROOF: This is Lemma 1 of Lo and Singh (1984)., The proof is based upon :
Markov's inequality and Taylor's expansions. ]

Let Q(t) and Q;(t) be the distribution (subdistribution) function such
that Q(t) = F(t) G(t) and 0j(t) = P(Z) < t and 8] = 1), It is easy to
check that Q(t) « f; E(t) d F(t), and hence dQj(t) = G(t)dF(t). Note that i
Q(t) 1s the distribution of the observation Z. Llet g(t) = f; [6(5)]-2 d0;(s) ]

be the asymptotic variance of H, (Breslow and Crowley (1976)). For positive

C e T

real z and t, and § taking values O or 1, let £ (z,5,t) = [5(2)].l I (z<t and
6=1) - g(zAt). The following lemma, although not stated explicitely in Lo and
Singh (1984), can be proved by tracing the arguments of their Theorem 1. The

proof can be found in Proposition 1 of Lo, Mack and Wang (1985).

Lemma 3.2. If F is continuous, for any P > 0, there exists constant 6 > 0

(depending on P) such that

n
(3.1) Hy(t) =-B(t) =n ) T E (24, 64, t) + Ry(t), where
1=] 3

(3.2) P( Sup | Ry(t) | > 0(lon 11/11)3/4 ) = 0(n"P). .
0<t<T ]

We shall now assume that F(t) has bounded density function £(t) on [O,T}, and

-y
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let M = Sup {)f(t)]| : O<t<T}. Let

£4(t) = E(24, 61, t), and q = Q(T) > O,
Lemma 3.3. (a) For any x in [0,T] and € < (3/2)Mx,
-1 n nez 2
(3.3) P{|n I g (®)|>e}c2exp (-} .
1=]

(b) For any x < y both in [0,T] and e < (3/4)M(y—x),

22
-1 B ne
(3.4) P {|n 2 g, () -8l | >e}<2exp (-} -

PROOF: 1In order to facilitate the aplication of Lemma 3.1, let ngy = Eq(x).

Then E ny = 0 and
02 = Var (ng) = g(x)
X = -2
=[5 [ d o)
- f: (5(:)1'2 G(t) dF(t), since dQi(t) = G(t) dFr(t),

< !’(x)tl-2
< qu-z .

It can be checked easily that
PO S -2 -2
le,(x)| < [a(x)]7 + [Ax))" < 29 ° . Taking C= 2q °, d= (ne)/3 and
2 2 2 2
z = (ne“q”)/(9Mx), then Cz < d, and nzc" = d°, so Lemma 3.1 applies to

n
| £ "1' ylelding (3.3).
=1

To show (3.4) let ng = £4(x) = E4(y). Again Eny = O and

»L.c ., .
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Var (ng) = g(x) + g(y) - 2g(xAy)
= (Y [3())2
7 13(6)17° aq (t)
= /7 16172 &) dr(e)

< [F(y) - F(x)] q 2
< M(y-x) q 2.
v When C = 492, d = (ne)/3 and z = (ne2q2)/[9M(y-x)], the conditions of Lemma

3.1 are satisfied and (3.4) follows. =
4, MAIN RESULTS

In this section we shall show the nllz-equivalence of the PL-estimator F,

~ *
and the modified estimator F,, and F,. We shall assume that F(t) has bounded

ava s s AP Y

density £f(t) on [0,T], and M = Sup |f(t)|. Let ap = Inf {x: F(x) > 0} be

0<t<T
v the left endpoint of the support of F, and L = T - ap.
’ The proofs of the main results utilize notions of linear interpolating

functions which we now define.
Let {k,} be a sequence of integers tending to infinity. For each n,

. partition the interval [ap, T} into k; equal length subintervals

[a;, ajill’ j=0, 1, ..., ky-1, where ag = ap, a:n- T.
3 For any function g on [ap,T] define its linear interpolating function

. . Lpg as
n n n n
Lng(aj) g(aj) for 3=0, 1, «.., k;, and Lyg(x) is linear on [aj, aj+l]
: for each j-o’ 1, seny k\“-lo

P, Thus Lng is a plecewise linear function. Note that {L,H,(t) : O<t<T} is

a stochastic process whose realizations are pilecewise linear functions,
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Let A, be the event that L,H, is starshaped on {0,T] and B, be the event
that LR, is superadditive on [0,T].

We proceed with a series of Lemmas.

Lemma 4.1. 1If there exists a constant A > 0 such that for any 0 { x < y < T,
(4.1) [H(y)/y] - [H(x)/x] > A(y=x),

then for any p > 0, and k, = 0 ((n/log n) 3/8y,

2,2.3
1-P(A,) < 4k, exp { - -t-'-—q-l—;‘— } +0(n"P) , for n sufficiently large,
36Mk

n

PROOF: Since LyH,; is piecewise linear, it is starshaped on [0,T] if and only

if Hn(ag)/ag is’'increasing in j. This implies that 1 - P(A,) < kg P(Bj),
i=1

where Ej is the event that Hn(a;)/a; j:l)/’j:l .

To compute P(Ej) for fixed j>1, let x = ag, y= aj:l and hence y=x = L/k,

is greater than H(a

and Yx>(L/k,). Now consider

P(Ey) = P{IHy(y)/3) < [Hn(x)/x] )

P{[Ha(y) - H(y)] - [Hp(x) = H(x)] < H(x) = H(y) + Hy(x) (y-x)/x}

~n

P{[Hy(y) - H(y)) - [Hg(x) - H(x)] < [Hna(x) = H(x)] (y~x)/x = Ay(y-x) },

from (a.l)’

L)

P{[Hy(y) - H(y)) - [Bu(x) - B(x)] < = (A/2)y(y=—=x))

P{{Hp(x) - B(x)] (y=x)/x > (A/2)y(yx)}

+

o)

a
P} 2 I 1) -5 1] > (aytro) +

n
PIRa(x) - Ra(p)| > (W/&)y(y=x)} + B(| = AR
i=




+ P{|Ry(x)] > (\/&)xy }

n
<p(fd I 00 -8 1> 0/ G0%) + Bk | > /6 W)

n
+ P{|Ra(y) | > /OIW/RDZ ) + B( |4 AL [ > (A /2) x(y=x)}
i=

+ P(Ra(0} > (\/2) (L/kg)?}, since y > af = 2(y=x) = 2(L/ky).
For ky = 0 ((n/log n) 3/8), Lemma 3.2 implies that

(4.2) P{ Sup | Ry(t) | > (A/4) (L/kp)?) = (4 P).
0<tLT

Since y-x = L/k; tends to zero as n tends to », we have (A/2) x (y~x) <
(3/2)Mx and (A/2) (y=x)2 < (3/4) M (y=-x) for n sufficiently large.

Lemma 3.3 now implies that

n 2lzx( )2
(4.3) P{| < i):l ()] > (A/2) x (3x) } < 2 exp { BIAETE

< 2exp { - 233&;23 } , and

36Mk
n
1 0 2 a 2k2( )3
(4.8) P{l o I (5,0 =] > O/2) (5x)7) < 2exp { - HZATE
1-1
2A2L3
< 2exp ( "H——a— } .
36Mk_

The lemma now follows from (4.2), (4.3) and (4.4), where we replaced

kn0(,"P) by O(n~P) since P can be any positive number. .

Wy ‘\", Y S _‘y“.l'-'"-('y..'- R RPN -{."‘. . ".. "'. CA 70 W AP "..‘.- ‘1. '.-.;_..;..‘:’.‘-‘- > '_-..:'.-"- "‘..:.."..i"_.‘:',‘:_- e
BT ; £ gt S Sy ) CRA'E b8 SNt o R A 2 . n ! N
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Next we obtain a similar result for the event B,, We first find a
necessary and sufficient condition for the polygon L H,(t) to be

superadditive using the results of Bruckner (1960, 1962)., Note that

. va on mm e e T

{0} {a;, 3=0, 1, «ss, ky)} are the vertices of the polygon L,Rn(t).

&

Lemma 4.2. L,H,(t) is superadditive on [0,T] if and only if it is

e

superadditive on {ag. 1=0, 1, oo, kyl.
PROOF: We only need to consider the case when LR, (t) is superadditive on

{a;, j-O, l. ceey h)}n

Let £fi(t) = 0'. for 0 < t < ap, and
) £o(t) = LyA (t + ap), for 0 < t < L.

Then £3(t) is a polygon on [0,L] with equally spaced vertices, and
Theorem 8 of Bruckner (1960) implies that f2(t) is superadditive on [O,L].
Following the definitions of Bruckner (1962, P. 127), it can be checked easily

that f; and fy form a decomposition of L,H,(t). Since the minimal

4
)
1
L}
.
¥
)
)

superadditive extension of f] is the zero function on [0,T], Theorem 1 of

Bruckner (1962) implies that L,H,(t) is superadditive on [0,T]. s

Lemma 4.3. If there exists a constant @ > 0 such that for any OCx<yT,
(4.5) H(x+y) > H(x) + H(y) + axy , then for any P > 0 and
kn = 0 ((n/log n) 3/8),

2273
1 -P (B, < & kﬁ exp {- IELJL%%— } + 0(n"P) for n sufficiently large.

T2Mk
n

DRy 2 AN TR ot
R AN AN A AL A O]

- . T I T T S P T I St =
<,- -y . ‘Q.'. “ " i '.If“’\ - ‘-{;' . --"-.'. :\.!....‘.- .J \ \ :
4y W AWy A% A AT B < Bk -
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- PROOF: Lemma 4.2 implies that,

1 -~ P(B,) = P{ There exists 1 and j such that

j Hn(a)) + Hn(a?) > Hy(ay + a';) }

kn
< £ PE

) , where B, is the event
1,91 4 13

that Wip(ay) + By(a)) > Hplal + a)) .

To evaluate P(Ejj) for fixed 1 and j, let a = x, a; -y,
P(Ej3) = P{Hy(x) = H(x) + Hp(y) = H(y) > Hp(x+y) - [H(x) + H(y)]}
< P{Hy(x) - H(x) + Hy(y) - H(y) > Hy(x+y) - H(x+y) + axy}
= P{[Hn(x’) = H(x)] = [Hy(x+y) - H(x+Y)] > ~ [Hy(y) - H(y)] + axy}
< P{[Hp(x) = H(x)] = [Hp(x+y) - H(x+y)] > (a/2)xy)}
; + P(Ry(y) - B(y) > (a/2)xy}
< B %Elwim - g 1] > @/ +B(| L2 g (o))

> (a/8)(L/kg)y} + 3 P{ Sup |R(t)] > (a/6)(L/kp)2)
O<t<T

nqzaz(l./k..)zy) } +2exp { - nqzaz(l./kn)zy

<2exp{ - Ta4M T44M

} +0(n”P) ,

by Lemma 3.3 since (a/4)(L/k,)y < (3/2) My < (3/4) My for large n,

2.2.3

Chexp{ -292L ) 4 o(nP) , since P2(L/Kky).
7241

Lemma 4.3 thus follows, Here we use the same fact that k: o(n~P) can be

replaced by 0(n P) since the choice of p can be arbitrary. o

PO
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Y W PRI g By I P TR S A e o .'.. NN " AT R e .'_,J SR O O O ..'.-,‘.- -‘}-'.-
O R AT A & X, w P T g ¥ Vi R . . N h A




: . . gt TR XY gt g gt ot Bt e’ da ig" Zabae
R O T Y P S 2O P ) S g dpb Bat Bal e Rgt at KNI e a2 4 JVY W

14

The following two Lemmas are propositions 2 and 3 of Wang (1982),

Lemma 4,4. For any distribution function F with hazard function H,

sup n'/2 | B(t) - LyA(t) | + O implies that
0<t<T
1/2
Sup n | Bp(t) = LaBa(t) | + 0 in probability.
0<t<T

Lemma 4.5. Let H be a differentiable hazard function satisfying

(4.6) |H'(x) - H'(y)] < B |x~y|, for any x, y in [0,T], and some constant
>0, then

Sup  |H(t) - LpA(t)| < 28 (L/kg)>.
0<t<T

’

We are now ready to prove the main theorems.

Theorem 4.1

Let F be an IFRA distribution function satisfying (4.1) and (4.6), then

sup /2 |c (t) - Hy(t)] + O in probability.
0<E<T
nqA%} 173
PROOF: Let ky = Ijpguyoem ) »

Setting P=3 in Lemma 4.1 implies that 1-P(A,) < n~2 for n sufficiently large.
When A, occurs L,H, is starshaped so Lemma 2.1 implies that

Sup {Cp(t) - Hy(t)| < Sup | Cp(t) = LyHp(t) | + Sup | Lyfn(t) - Bu(e) |
0<t<T 0<t<T o<t<T

<2 Sup | LpHp(t) = Hy(t) |.
0<t<T

1/4 _ =1

Since n

kn
1/2

+0, Lemma 4.5 implies that

Sup n

| H(t) - LoR(t) | » O,
0<t<T

The theorem now follows from Lemma 4.4. a

-y -

O PO S
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)
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Corallary 4.1. Under the assumptions of Theorem 4.1,

Sup n1/2 | ;n(t) = F (t) | + 0 in probability.
0<t<T n
PROOF: Sup | ;n(t) = Fp(t) | = | exp (=Cp(t)) = exp (~Huy(t)) |
0<t<T

< ! cn(t) -ﬂn(t) Io [ ]

Theorem 4.2. Llet F be an NBU distribution function satisfying (4.5) and
(4.6), then

Sup nl/2 | Dp(t) = Ha(t) | + 0 1in probadbility.

0<ikT

PROOF: The proof follows the derivation of Theorem 4.1 utilizing Lemmas 2.2,

]

4.3, 4.4 and 4.5, and choosing k, = l—-ﬂz“—z-lil 13 .
e Do 2 g 216M log n .
Corallary 4.2. Under the assumption of Theorem 4.2,
1/2 *
Sup n | F (t) - F () | + 0 1n probability.
0<t<T
PROOF: The proof is similar to Corallary 4.l. .

Remarks:

1. Condition (4.1) essentially means that H is uniformly strictly
starshaped, or.the life distribution F i3 uniformly strictly IFRA. Condition
(4.5) 18 a uniformly strict superadditivity condition on the hazard function
H, which essentially means that the life distribution ¥ should be uniformlv
strictly NBU.

2, From the proof of Theorems 4.1 and 4.2, it can be seen that

172 | LpHn(t) - Hy(t) | also tends to zero in probability for i

Sup n
0<t<T
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properly chosen {k,} (e.g. the choices of k, in Theorems &4.1. and 4.2.). A
practical consequence is that, instead of computing C,(D,) exactly, one may be
able to use Lyf, as our estimator of the hazard function. The estimtor LA,
is much easier to compute than C,(D,) and has a high probability (P(A,) or
P(Bp,)) of being starshaped (NBU).

3. The techniques of this paper can also be applied to obtain analogues
of Theorems 4.1 and 4.2 for distributions with Decreasing Failure Rate Average
(DFRA) or distributions which are New Worse than Used (NWU). Similar results
to Theorems 4.1 and 4.2 can be obtained for DFRA and NBU distributions

respectively,
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